UNIVERSITY OF CALCUTTA
Notification No. CSR/67/2025

It is notified for information of all concerned that in terms of the provisions of Section
54 of the Calcutta University Act, 1979, (as amended), and, in the exercise of her powers
under 9(6) of the said Act, the Vice-Chancellor has, by an order dated 22.09.2025,
approved the Course Structure & Syllabus for Major Courses of semester-5 & 6 of 4-
year Honours and Honours with Research Courses of studies and revised course
structure for Minor Courses of 4-year Honours and Honours with Research Courses of

studies in Computer Science under CCF,2022.

Detail Syllabus of Minor Courses was Published under CSR/82/2024, dt. 26.09.2024.

The above shall take effect from the Odd semester examinations, 2025 and

onwards.

3505
SENATE HOUSE Prof.(Dr.) Debasis Das
Kolkata-700073 Registrar

13.10.2025

University
of
Calcutta

B.Sc. (Honours and
Honours with Research),
4 - Years degree program in
Computer Science under
credit framework (CCF).
(2024)

Semester -V & VI

Semester - 5

Theory Paper Credit | Contact | Practical/Tutorial | Credit | Contact
hours Paper hours

Design & Analysis of 03 45 Graph algorithms 1 30

Algorithms Lab using C++

Data Communication and 03 45 Networking Lab 1 30

Networking

Theory of Computation 03 45 Tutorial 1 30

Database Management 03 45 RDBMS Lab 1 30

System (DBMYS)

Theory: Design & Analysis of Algorithms
Credits - 03, Contact hours - 45.

Introduction to Algorithms:

Definition, Characteristics, Recursive and Non-recursive algorithms 3 hours

Asymptotic Complexity Analysis of Algorithms:

Space and Time Complexity, Efficiency of an algorithm, Growth of Functions,

Polynomial and Exponential Complexity, Asymptotic Notations: Big O Notation and | 6 hours

Small o notation, Big Q and Small o, Big ® and Small ¢ Notations, Properties: Best

case/worst case/average case analysis of well-known algorithms.

Algorithm Design Techniques:

Concepts and simple case studies of Greedy algorithms. Divide and conquer: Basic

concepts, Case study of selected searching and sorting problems using divide and 12 hours

conquer techniques: Dynamic programming: General issues in Dynamic Programming.

Graph Representation and Algorithm:

Graph traversal algorithms: BFS, DFS, Minimal spanning trees: Prim's Algorithm,

Kruskal's Algorithm, Shortest path algorithms: Floyd's Algorithm, Floyd-Warshall 22 hours

Algorithm, Dijkstra's Algorithm, Graph Colouring Algorithms.

Classification of Problems:

Concept of P, NP. 2 hours

Text/References Books

1. Introduction to Algorithms, Cormen, Leiserson, Rivest and Stein, TMH.

The Art of Computer Programming, D.E. Knuth, Pearson Education.
Algorithm Design, Jon Kleiberg and Eva Tardos,Pearson Education.

Data Structures and Algorithms - K.Mehlhorn.

Computer Algorithms, S.Baase, Pearson Education.

Fundamentals of Computer Algorithms, E. Horowitz and Sahani, Galgotia

Nk WDN

PHI.

The Design and Analysis of Algorithms, Aho, Hopcroft and Ullman, Pearson Education.

Combinational Algorithms- Theory and Practice, E.M. Reingold, J. Nievergelt and N. Deo,

Practical: Graph algorithms Lab using C++
Credits - 01, Contact hours - 30.

Pre-requisite;

1. Programming Foundations in C++
e Syntax, data types, loops, conditionals, and functions
e STL basics — especially vector, queue, stack, and map
e Dynamic memory and pointers (essential for building graph structures)
2. Graph Theory Fundamentals
e Terminology: vertices, edges, adjacency, degree, cycles
e Graph types: directed vs undirected, weighted vs unweighted
e Representations: adjacency matrix vs adjacency list
3. Math & Logic Readiness
e Basic combinatorics and logic reasoning
e Set theory (for understanding disjoint sets and connectivity)
o Matrices (helpful for adjacency matrix representations)

4. Compilers
o C++ compiler GCC
or

o MSVC (Microsoft Visual C++), Visual Studio Community Edition.

Laboratory exercises to be based on Graph Theory using C++ and based on the following;

Implementation of Graph algorithms: Single Spanning Tree Generation using - BFS, DFS, Minimal
Spanning Tree Generation using - Prim's Algorithm, Kruskal’s Algorithm, Shortest Path finding using
Floyd's Algorithm, Floyd-Warshall Algorithm, Dijkstra's Algorithm, Graph Partitioning Algorithm.

Sample questions

1. Write a C++ program to generate a single spanning tree using Breadth-First Search (BFS).
Trace and display visited nodes.

2. Develop a Depth-First Search (DFS)-based C++ algorithm to construct a spanning tree from a
connected undirected graph. Compare traversal order with BFS.

3. Design and implement Prim’s Algorithm using adjacency list and priority queue in C++.
Display the edges included in the MST and their weights.

4. Construct Kruskal’s Algorithm using disjoint set union in C++. Identify cycle prevention
strategy and display final edge set of the MST.

5. Write a C++ program to compute the shortest paths from a single source using Dijkstra’s
Algorithm. Provide output trace with distances and paths.

6. Implement Floyd’s Algorithm to find all-pairs shortest paths in a weighted graph using
adjacency matrix representation. Analyze time complexity.

7. Demonstrate Floyd-Warshall Algorithm with intermediate node storage. Display final distance
matrix and reconstructed paths.

8. Apply a basic graph partitioning strategy using BFS clustering in C++. Divide the graph into
subgraphs and count nodes in each.

9. Implement a heuristic-based Graph Partitioning Algorithm in C++ and evaluate inter-partition
edge cuts. Visualize the result if possible.

Note: The questions provided are illustrative samples. Students are encouraged to practice additional
exercises aligned with the prescribed syllabus topics for comprehensive understanding.

Theory: Data Communication and Networking
Credits - 03, Contact hours - 45.

Overview of Data Communication and Networking

Introduction: Data communications Components, data representation, direction of data
flow (simplex, half duplex, full duplex).

Network Hardware: Physical structure (type of connection, topology), categories of
network (LAN, MAN, WAN).

Internet: Brief history, Protocols and standards,

Reference models: OSI reference model, properties of all the layers, TCP/IP reference
model, their comparative study.

03 hours

Physical Layer

Data & Signals: Analog & Digital Data and Signals, periodic and non-periodic signals,
composite signals, bandwidth, bit rate, transmission of digital signals.

Transmission Impairments: Attenuation, Distortion and Noise.

Data Rate Limits: Noiseless Channel: Nyquist Data rate, Noisy Channel: Shannon’s
Capacity, calculation of data rate using both limits.

Digital Transmission

Digital to Digital Conversion: Line coding, schemes (RZ, NRZ, Manchester, Differential
Manchester), block coding.

Analog to Digital Conversion: Sampling, Nyquist rate of sampling, Pulse code
modulation (PCM), Delta Modulation (DM), Adaptive Delta Modulation (ADM), parallel
and serial transmission.

Analog Transmission

Digital to Analog conversion: Amplitude shift keying (ASK), Frequency Shift Keying
(FSK), Phase Shift Keying (PSK), Quadrature Amplitude Modulation (QAM).

Analog to Analog Conversion (qualitative): Amplitude Modulation (AM), Frequency
Modulation (FM), Phase Modulation.

11 hours

Bandwidth Utilization Techniques
Multiplexing: FDM, Synchronous & Statistical TDM, WDM.

03 hours

Transmission Media

Guided media: Twisted pair, Coaxial, Fiber optics.

Unguided: Radio waves, microwaves, Infrared, Antenna, Communication satellites
(qualitative study only).

04 hours

Switching and Telephone network

Circuit switched networks, Packet Switched networks, Virtual Circuit switch.

Major components of telephone network, Dial up modem, DSL and ADSL modems, Cable
TV for data transfer (qualitative study only)

03 hours

Data link Layer

Types of errors, framing (character and bit stuffing), error detection & correction methods,
Linear and cyclic codes, checksum.

Protocols: Stop & wait ARQ, Go-Back- N ARQ, Selective repeat ARQ, HDLC
(qualitative study only).

Physical addressing: MAC address and its format

03 hours

Medium Access sub layer

Point to Point Protocol, Token Ring: Reservation, Polling.

Multiple access protocols: Pure & Slotted ALOHA, CSMA, CSMA/CD, CSMA/CA.
Channelization: FDMA, TDMA, CDMA (Qualitative study only).

Wired and Wireless LAN: Standards, fast Ethernet, Protocol 802.11, Bluetooth.

05 hours

Network layer
Internetworking & devices: Repeaters, Hubs, Bridges, Switches, Router, Gateway, 07 hours
Addressing: IP addressing, Subnetting, Routing techniques: static vs. dynamic routing,
Protocols: RARP, ARP, IP, ICMP.

Transport layer 02 hours
Process to Process delivery: UDP, TCP

Application Layer
Introduction to DNS, Remote logging, FTP, Electronic mail, WWW & HTTP. 04 hours

Text/ Reference Books

vk wnN e

Data Communication and Networking, B.A. Forouzan, Tata McGraw Hill.
Computer Networks, A.S. Tanenbaum, Pearson Education.

Data and Computer Communication, W. Stallings, Pearson Education.

Data & Computer Communication, Black, PHI.

Internet & World Wide Web: How to program, Harvey M. Deitel& Paul J. Deitel.

Practical: Networking Lab
Credit: 01, Contact hour: 30.

1.

10.

11.

12.

13.

14.

15.

Simulate Simplex, Half Duplex, and Full Duplex Communication Use serial and Ethernet ports
to show directional data flow between two nodes.

Create LAN, MAN, and WAN Topologies Use appropriate devices (switches, routers, cloud)
to build various category-wise networks.

Design Physical Topologies Implement star, bus, ring, and mesh topologies using appropriate
devices.

Model Protocol Stack using TCP/IP Reference Model Layers Simulate communication between
clients and servers, annotating each layer's activity.

Compare OSI vs TCP/IP Reference Models Create two scenarios showing layered
encapsulation in both stacks and interpret packet flows.

Visualize Bandwidth and Bit Rate Concepts Use different cable types and configure link speeds
to demonstrate throughput variations.

Simulate Signal Impairments Using Distorted Packets Introduce corruption manually and trace
signal behavior across a noisy channel.

Compare Guided Media: Coaxial vs Fiber vs Twisted Pair Deploy multiple link types and
measure latency and throughput across them.

Implement Multiplexing Models (FDM & TDM) Use time-sequenced communication across
nodes to simulate multiplexed channel behavior.

Simulate Packet Switching Using Routers Design a scenario where data packets are rerouted
based on availability.

Create a Virtual Circuit Setup Between Devices Use Label Switching or logical pathways to
model a fixed route data exchange.

Demonstrate MAC Addressing and Frame Inspection Use simulation mode to trace MAC-level
transmission and address resolution.

Simulate Error Detection Using Checksums and CRC Introduce errors and verify how they’re
flagged and corrected.

Frame Construction Using Bit and Character Stuffing Manual framing via scripts or event
annotation showcasing stuffing techniques.

Compare CSMA/CD vs CSMA/CA Protocols Use wired Ethernet vs wireless 802.11
environments to simulate contention handling.

16. Create WLAN Using 802.11 Standard Devices Configure a wireless network with access
points, laptops, and mobile nodes.

17. Simulate Bluetooth and PAN Communication Establish small-scale device-to-device networks
to reflect low-energy protocol behavior.

18. Configure Static and Dynamic Routing Using RIP/EIGRP/OSPF Route between multiple
routers with table inspection and simulation.

19. Implement IP Addressing and Subnetting Assign subnets to devices and verify connectivity
across routed domains.

20. Simulate TCP and UDP Communication Use PCs and servers to demonstrate reliable vs
unreliable transport with packet inspection.

Simulator: CISCO Packet Tracer

Note: The questions provided are illustrative samples. Students are encouraged to practice additional
exercises aligned with the prescribed syllabus topics for comprehensive understanding.

Theory: Theory of Computation
Credits - 03, Contact hours - 45.

Finite Automata

Definition of a Finite Automaton, Model, Representation, Classification — with respect to
output function Mealy and Moore Machines, with respect to State Transition -
Deterministic and Non-Deterministic Machine, Examples, conversion algorithms Mealy
to Moore and Moore to Mealy, Finite and Infinite state machines, Finite Automaton, | 12 hours
Deterministic and Non-Deterministic Finite automaton, non-deterministic to equivalent
Deterministic Automaton-Optimized and Non-optimized technique ideas and algorithms,
Acceptability of String by a Finite Automaton.

Formal Languages and Grammar

Introduction to Formal Grammar and Language, Chomsky’s Classification of Grammar —
Type-0, Type-1 or Context Sensitive, Type-2 or Context Free and Type-3 or Regular
Grammar, llustration of each of these classes with example, Sentential form, Sentences — | 11 hours
Languages or strings, Derivations, Ambiguous Grammar and Language, Designing of
Grammar for a language, Find the Language for given Grammar, Definition and basic idea
about Push Down Automaton.

Regular Expression

Basic Idea and Definition, Regular Expression basic ldentities, Arden’s Theorem —
Statement (without Proof) and application for reduction of equivalent regular expressions,
Regular expression to Finite Automata conversion, State Transition System to Regular | 12 hours
Expression conversion algorithm by Arden’s Algebraic Method, FA to Regular Grammar
and Regular Grammar to FA conversion algorithms and applications.

Turing Machine

Concepts of Turing Machine, Formal Definitions, Classifications — Deterministic and
Non-Deterministic Turing Machines, Simple Design of Turing Machines: Odd / even
count and concepts of Universal Turing Machines, Difference and Similarities between | 10 hours
Turing Machine and a General-Purpose Computer, Definition and significant of Halting
Problem in Turing Machine.

Text/ Reference Books

1. Introduction to Automata Theory, Languages, and Computation by John E. Hopcroft, Rajeev

Motwani, Jeffrey D. Ullman, 3rd Edition, Pearson.

2. Theory of Computer Science (Automata, Languages & Computation) by K L P Misra & N

Chandrasekharan, 3rd Edition, PHI.

P w

5. Formal Language and Automata, P. Linz, Narosa.

Practical: Tutorial
Credits - 01, Contact hours - 30.

Theory: Database Management System (DBMS)
Credits - 03, Contact hours - 45,

Introduction to Theory of Computation by MichealSipser, 3rd Edition, Cengage Learning.
Switching and Finite Automata Theory by ZviKohavi, Niraj.K.Jha, 3rd Edition, TMH.

Introduction
Drawbacks of Legacy System; Advantages of DBMS; Layered Architecture of Database,

Sequential, Hashed; Concepts of Primary and Secondary Index; Dense and Sparse Index;
Index Sequential Files; Multilevel Indices.

Data Independence; Data Models; Schemas and Instances; Database Languages; Database | 03 hours
Users, DBA; Data Dictionary.

Entity Relationship (ER) Modelling

Entity, Attributes and Relationship, Structural Constraints, Keys, ER Diagram of Some | 04 hours
Example Database, Weak and strong Entity Set, Specialization and Generalization,
Constraints of Specialization and Generalization, Aggregation.

Relational Model

Basic Concepts of Relational Model; Relational Algebra; Tuple Relational Calculus; | 08 hours
Domain Relational Calculus.

Integrity Constraints

Domain Constraints, Referential Integrity, View. 04 hours
Relational Database Design

Problems of Un-Normalized Database; Functional Dependencies (FD), Derivation Rules,

Closure of FD Set, Canonical Cover; Normalization: Decomposition to 1NF, 2NF, 3NF | 10 hours
or BCNF Using FD; Lossless Join Decomposition Algorithm; Dependency preservation.

SQL

Basic Structure, Data Definition, Constraints and Schema Changes; Basic SQL Queries
(Selection, Insertion, Deletion, Update); Order by Clause; Complex Queries, Aggregate | 11 hours
Function and Group by Clause; Nested Sub Queries; Views, Joined Relations; Set
Comparisons (All, Some); Derived Relations.

Record Storage and File Organization (Concepts only)

Fixed Length and Variable Length Records; Spanned and Un-Spanned Organization of

Records; Primary File Organizations and Access Structures Concepts; Unordered, | 05 hours

Text/ Reference Books

Fundamentals of Database Systems 6th Edition, R. Elmasri, S.B. Navathe, Pearson Education.
Database Management Systems, R. Ramakrishanan, J. Gehrke,3rd Edition, McGraw-Hill.
Database System Concepts 6th Edition, A. Silberschatz, H.F. Korth, S. Sudarshan, McGraw
Hill.

Database Systems Models, Languages, Design and application Programming, R. Elmasri, S.B.
Navathe, Pearson Education.

SQL and Relational Theory: How to Write Accurate SQL Code, Christopher J. Date, O'Reilly
Media.

Database Systems: A Practical Approach to Design, Implementation and Management, Thomas
M. Connolly and Carolyn E. Begg, Pearson.

Practical: RDBMS Lab
Credits - 01, Contact hours - 30.

1.

10.

11.

12.

13.

14.

15.

Design a student-course enroliment schema using Excel (legacy format), then recreate the same
in MySQL using normalized tables to highlight redundancy reduction and relational integrity.
Create a login system using MySQL that demonstrates layered architecture. Separate user
credentials (user layer), schema definitions (schema layer), and storage engine settings (storage
layer).

Alter a table’s structure (e.g., add/remove columns) and demonstrate how MySQL preserves
application-level logic, illustrating data independence.

Draw an ER diagram for a college admission system. Then, create MySQL tables for Student,
Course, and Department reflecting primary/foreign key relationships.

Model weak and strong entities by implementing Dependent and Employee tables in MySQL.
Use partial key constraints and foreign key links.

Demonstrate specialization/generalization by creating an entity Vehicle, and specialized
entities Car and Truck in MySQL using table inheritance logic.

Convert your ER diagram from Exercise 4 into relational schemas and implement the tables in
MySQL.

Use MySQL to perform relational algebra operations:

Selection: Retrieve students from a particular department

Projection: List unigue course names

Union: Combine student lists from two departments

Join: Get student names with course titles they enrolled in*

Write queries using tuple and domain relational calculus concepts translated into SQL.
Example: “Find all students who have enrolled in Math but not Physics.”

Create a student-course database in MySQL. Apply domain constraints (e.g., NOT NULL,
CHECK), and referential constraints using FOREIGN KEYSs.

Define a MySQL view that shows the average marks of students per department. Write SQL to
query from that view.

Design a student performance table with repeated subject columns. Show data redundancy and
anomalies during updates.

Normalize the above table into 1INF, 2NF, 3NF, and BCNF. Create each normal form version
using MySQL CREATE TABLE statements.

Demonstrate lossless join and dependency preservation using SQL joins. Verify consistency of
decomposed relations.

*Create a Sales database in MySQL. Write SQL queries to:

SELECT all products

INSERT a new order

UPDATE product price

DELETE an obsolete order*

16. Write complex queries using GROUP BY and aggregate functions to calculate total sales per
region and highest priced product per category.

17. Use nested subqueries and SET comparison operators (ALL, ANY, SOME) to find customers
with purchases exceeding others.

18. Join customer and order tables. Create a view for total spending per customer. Query the view
to find top spenders.

19. Write derived table queries (subqueries inside FROM) to filter high-value orders exceeding
%20,000.

20. Apply schema constraints using PRIMARY KEY, FOREIGN KEY, and CHECK. Perform
ALTER TABLE operations to modify schema.

RDBMS software tool: MYSQL

Note: The questions provided are illustrative samples. Students are encouraged to practice additional
exercises aligned with the prescribed syllabus topics for comprehensive understanding.

Semester - 6
Theory Paper Credit | Contact | Practical/Tutorial Credit | Contact
hours Paper hours
Software Engineering 03 45 Tutorial 1 30
Programming in Python 03 45 Programming in 1 30
Python
Linear Algebra & 03 45 Linear Algebra & 1 30
Statistical Methods Statistical Methods
using Python

Theory: Software Engineering
Credits - 03, Contact hours - 45,

Introduction
Defining system, open and closed system, modelling of system through computer | 3 hours
hardware, communication systems, external agents and software systems; Importance of
Engineering Methodology towards computerization of a system.

Software Life Cycle

Classical and Iterative Waterfall Model; Spiral Model; Prototype Model; Evolutionary
model and its importance towards application for different system representations, | 6 hours
Comparative Studies.

Software Requirement and Specification Analysis

Requirements Principles and its analysis principles; Specification Principles and its
Representations Software Design Analysis — Different level of DFD Design, Physical and | 15 hours
Logical DFD, Use and Conversions between them, Decision Tables and Trees, Structured
analysis, Coupling and Cohesion of different modules Software Cost Estimation
Modelling -COCOMO.

Software Testing

Software Verification and Validation; Testing objectives, Testing Principles, Testability;
Error and Faults; Unit Testing, White Box and Blank Box Testing, Test Case Design: Test | 15 hours
Vector, Test Stub.

Software Quality Assurances
Concepts of Quality, Quality Control, Quality Assurance, IEEE Standard for Statistical
Software Quality Assurances (SSQA) criterions.

Text/References Books

Software Engineering: A Practitioner’s Approach by R.S. Pressman, McGraw-Hill.
An Integrated Approach to Software Engineering by P. Jalote, Narosa Publishing House.
Software Engineering by K.K. Aggarwal and Y. Singh, New Age International Publishers.

06 hours

Software Engineering by 1. Sommerville, Addison Wesle.
Software Engineering for Students by D. Bell, Addison-Wesley.
Fundamentals of Software Engineering by R. Mall, PHI.

o0 A wN

Practical: Tutorial
Credits - 01, Contact hours - 30.

Theory: Programming In Python
Credits - 03, Contact hours - 45.

Introduction

Introducing Python, features of Python, the paradigms, chronology and uses, setting up | 02 hours
Python on Windows and other Operating systems, introducing IDLE, Installation of

Anaconda and miniconda.

Parts of Python Programming Language

Identifiers, Keywords, Statements and Expressions, Variables, Operators, Precedence and
Associativity, Data Types, Indentation, Comments, Reading Inputs, print output, Type | 04 hours
Conversions, The type() function and Is operator, Dynamic and strongly typed language.

Control Flow Statements

If, if.....else, if.....elif...else decision control statement, nested if statement, While loop,

Continue and break, catching exceptions using try and except. 04 hours
Functions

Built in functions, commonly used modules, Function Definition and Calling the Function,

return and void function, Scope and life time of variables, default parameters, keyword | 04 hours
arguments, *args and **kwargs, command line arguments.

String

Creating and storing strings, basic string operation, Accessing Characters in string by | 05 hours
index, String slicing and joining, string methods, formatting strings.

Lists

Creating lists, basic list operations, indexing and slicing in lists, built-in functions used on | 05 hours
lists, list methods, del statements,

Dictionaries

Creating Dictionary, accessing and modifying key value, built-in functions used on | 03 hours
dictionaries, dictionary methods.

Tuples and Sets

and writing binary, the pickle module, reading and writing CSV files, python os and

Creating tuples, basic tuple operations, Indexing and slicing in Tuples, built-in functions | 04 hours
on tuples, relation between tuples and lists, relation between tuples and dictionaries, Tuple

methods, Zip() function, Sets, Sets methods, frozen set.

Files

Types of files, creating and reading text data, file method to read and write data, reading | 03 hours

o0s.path modules,

Regular expression
Using special characters, regular expression methods, named groups in python regular, | 03 hours
regular expression with glob module.

Object Oriented Programming
Classes and objects, creating classes in python, creating objects in python, constructor | 04 hours
method, classes with multiple objects, class versus data attributes, encapsulation,
inheritance, polymorphism.

Introduction to Data Science
Functional programming, JSON and XML in Python, Numpy with Python, Pandas, altair | 04 hours

Text/ Reference Books

1. Introduction to Computation and Programming Using Python: With Application to
Understanding Data, Guttag, John V. MIT Press.

2. Learn Python 3 the Hard Way: A Very Simple Introduction to the Terrifyingly Beautiful World
of Computers and Code, Shaw, Zed A, Addison-Wesley Professional.

3. Think Python 2e. Green Tea Books, Downey, Allen B.

4. Practical Programming: An Introduction to Computer Science Using Python 3.6. Pragmatic
Bookshelf, Gries, Paul, Jennifer Campbell, and Jason Montojo.

5. Introduction to Python Programming, Gowrishankar S, Veena A, Taylor and Francis, CRC
Press.

6. Python Cookbook, David Beazley and Brian K. Jones, O’Reilly.

Practical: Programming in Python
Credits - 01, Contact hours - 30.

1. Develop a Python program that reads marks from three different subjects and calculates their
average.

2. Create a Python script to convert weight from kilograms to pounds.

3. Write a program that takes the lengths of the three sides of a prism as input (integers) and
computes its surface area using the formula: 2ab + 2bc + 2ca.

4. Design a Python program to calculate the speed of a plane, given a distance of 395,000 meters
and a travel time of 9,000 seconds.

5. Build a program that determines how long it will take to empty a swimming pool of dimensions
12m x 7m x 2m using a pump with a flow rate of 17 cubic meters per hour.

6. Write a Python script to convert temperature from Celsius to Fahrenheit (input as a float).

7. Create a program to compute the total number of seconds in one full day.

8. Develop a Python program to calculate the acceleration of a car that starts from rest and reaches

a velocity of 10 m/s in 20 seconds, using the formula: (Vfinal - Vinitial)/time.

10.

11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.

23.
24.

25.
26.
27.
28.

29.

30.

31.

32.

33.

34.

35.

Write a program to display Pascal’s triangle.

Write a program to display the following pattern using nested loops.

11

2221

333321

4444 4321

55555 54321

Write a program that uses a while loop to add up all the even numbers between 100 and 200.
Write a program to print the sum of the following series

a.l+%+1/3++1/n

b. 1/1+2%2+ 333+ +n"/n

Write a program to find the depreciation value of an asset (property) by reading the purchase
value of the asset (amt), year of the service (year) and the value of depreciation.

Write a program that accepts a string from the user and display the same string after removing
vowels from it.

Write a function to insert a string in the middle of the string.

Write a program to sort a string lexicographically.

Write a program to replace a string with another string without using built-in methods.

Write a program to concatenate two strings into another string without using the + operator.
Write a program to strip a set of characters from a string.

Write a program to extract the first n characters of a string.

Write a program that creates a list of 10 random integers. Then create two lists by name odd_list
and even_list that have all odd and even values of the list respectively.

Write a program to sort the elements in ascending order using insertion sort.

Write a Python program to use binary search to find the key element in the list.

Make a list of the first eight letters of the alphabet, then using the slice operation do the
following operations:

a. Print the first three letters of the alphabet.

b. Print any three letters from the middle.

c. Print the letters from any particular index to the end of the list.

Write a program to sort the elements in ascending order using selection sort.

Write a program that prints the maximum value of the second half of the list.

Write a program that creates a list of numbers 1-100 that are either divisible by 5 or 6.

Write a function that prompts the user to enter five numbers, then invoke a function to find the
GCD of these numbers.

Write a function named addfruit, which is passed with a set of fruit names and their prices and
returns a dictionary containing the entered information and raises a ValueError exception if
the fruit is already present.

Write a function to add the air quality index as the value and the date as the key; create the
dictionary for the entered information.

Create a dictionary that contains usernames as the key and passwords as the associated values.
Make up the data for five dictionary entries and demonstrate the use of clear and fromkeys()
methods.

Write Pythonic code to create a dictionary that accepts a country name as a key and its capital
city as the value. Display the details in sorted order.

Write a program that has the dictionary of your friends’ names as keys and phone numbers as
its values. Print the dictionary in a sorted order. Prompt the user to enter the name and check if
it is present in the dictionary. If the name is not present, then enter the details in the dictionary.
Write a program to create a dictionary containing the author name as the keys and ISBN number
as the value. Make up the data for five dictionary entries and demonstrate the use of clear() and
fromkeys() methods.

Create a list containing three elements, and then create a tuple from that list.

36.
37.
38.
39.
40.
41.
42,

43.
44,
45.
46.

47.
48.

49.
50.

51.
52.

53.
54,
55.
56.
57.
58.
59.
60.
61.

62.

63.
64.

65.
66.

67.

68.
69.

70.
71.

Write a program to unpack a tuple to several variables.

Write a program to check whether an item exists within a tuple.

Write a program to unzip a list of tuples into individual lists.

Write a program to create an intersection, union, set difference, and symmetric

difference of sets.

Write a program to demonstrate the use of issubset() and issuperset() methods.

Write a program that takes a range and creates a list of tuples within that range with the first
element as the number and the second element as the square of the number.

Write a program to clear a set.

Write a program to find the length of the set.

Write a program to store the latitude and longitude of your house as a tuple and display it.
Write a program that prompts the user to enter a text file, reads words from the file, and displays
all the non-duplicate words in ascending order.

Write a program to get the file size of a plain text file.

Write a program that prompts the user to enter a text filename and displays the number of
vowels and consonants in the file.

Write a program to read the first n lines of a file. Prompt the user to enter the value for n.
Write a program that reads the contents of the file and counts the occurrences of each letter.
Prompt the user to enter the filename.

Write a program to read the last n lines of a file. Prompt the user to enter the value for n.
Write a program to combine each line from the first file with the corresponding line in the
second file.

Write a program to remove newline characters from a file.

Write a program to read the random line from a file.

Write a program to read and write the contents from one csv file to another.

Write a Python program that matches a word containing 'z'.

Write a Python program to remove all leading zeros' from an IP address

Write a Python program to search the numbers (0-9) of length between 1 to 3 in a given string.
Write a Python program to find the substrings within a string

Write a Python program to extract year, month and date from an url.

Write a Python program to read a file and to convert a date of yyyy-mm-dd format to dd-mm-
yyyy format.

Write a Python program to abbreviate 'Street' as 'St." in a given string.

Write a Python program to find all five characters long word in a string.

Create a class named quadratic, where a, b, c are data attributes and the methods are

a. __init__() to initialize the data attributes

b. roots() to compute the quadratic equation

Define a class called student. Display the marks details of top five students using inheritance.
Create a class called library with data attributes like acc_number, publisher, title and author.
The methods of the class should include

a. read() — acc_number, title, author.

b. compute() - to accept the number of days late, calculate and display the fine charged at the
rate of $1.50 per day.

c. display the data.

Create two base classes named clock and calendar. Based on these two classes define a class
calendarclock, which inherits from both the classes which displays month details, date and time.
Write a program to add two polynomials using classes.

Define JSON. Construct a simple JSON document and write Pythonic code to parse JSON
document.

Elaborate on the differences between XML and JSON.

Define XML. Construct a simple XML document and write Python code to loop through XML
nodes in the document.

72. Explain NumPy array creation functions with examples.

73. Explain NumPy integer indexing, array indexing, Boolean array indexing and slicing with

examples.

74. Write Python program to create and display a one-dimensional array-like object containing an

array of data using pandas library.
75. Write Python program to add, subtract, multiply and divide two Pandas Series.

76. Write Python program to create and display a Data Frame from a dictionary data which has the

index labels.

Note: The questions provided are illustrative samples. Students are encouraged to practice additional

exercises aligned with the prescribed syllabus topics for comprehensive understanding.

Theory: Linear Algebra & Statistical Methods
Credits - 03, Contact hours - 45.

Linear Algebra

Vectors

Introduction, Vector in Rn, vector addition and scalar multiplication, Dot (Inner) product,
orthogonality, Cauchy-Schwarz inequality, spatial vectors(R3).

Definition of matrices, elementary operations on matrices (addition, scalar multiplication,
matrix multiplication, transpose), different types of matrices, determinants and their
properties, matrix inverse.

Definition of linear transformations (Linear mappings), properties, kernel and image,

matrix representation of linear transformations. 15 hours
Representation of systems of linear equations in matrix form, consistent and inconsistent

systems, Gaussian elimination, Gauss-Jordan method, echelon matrices, row canonical

form, row equivalence.

Definition of vector spaces, examples, spanning sets, linear span, linear dependence and
independence, basis and dimension, rank, change of basis

Eigenvalues and Eigenvectors

Definition, characteristic equation, computing eigenvalues and eigenvectors,
diagonalizing matrices. 5 hours
Applications in computer graphics and machine learning: Principal Component Analysis

(PCA), Singular Value Decomposition (SVD) for dimensionality reduction and data

analysis.

Statistical methods

Descriptive Statistics & Probability basics

Data representation and summarization: Types of data (quantitative, qualitative),
measurement scales (nominal, ordinal, interval, ratio), frequency distributions, graphical | 5 hours

representation (histograms, frequency polygons), stem and leaf plots.
Measures of central tendency: mean, median, mode.

Measures of dispersion: range, variance, standard deviation.
Moments, skewness, and kurtosis: Characteristics of data distribution.
Moment-generating functions of random variables.

Probability distributions 10 hours

10 hours
Common distributions: Binomial, Poisson, Normal, Uniform, Exponential.
Sampling distributions of mean and variance.
Statistical inference
Point and interval estimation, estimating population parameters from sample data. 5 hours

Hypothesis testing, formulating hypotheses, Type | and Type Il errors, significance levels,
various tests (t-tests, chi-square tests, ANOVA.

Regression and Correlation

Definition of correlation, Karl Pearson coefficient of correlation, Spearman’'s rank | 5 hours
correlation coefficient.
Linear regression, least squares method, simple linear regression, fitting of polynomials
and exponential curves.

References:

1. Introduction to Linear Algebra, Gilbert Strang, 6th ed.

Linear Algebra and Its Applications, 5th Edition - Pearson by David C. Lay.

Linear Algebra: Step By Step, by Kuldeep Singh, Oxford University Press.

Linear Algebra, G. Hadley

Probability and Statistical Inference, by Robert V. Hogg, Elliot Tanis, Dale Zimmerman,

10th ed.

Fundamental Of Mathematical Statistics, S C Gupta & V K Kapoor, Sultan Chand and sons.

Introduction to Probability and Statistics for Engineers and Scientists, by Sheldon M. Ross,

Academic Pr; 5th edition.

8. Statistical Methods, N G Das, Tata McGraw Hill.

9. Statistical Methods An Introductory Text, by Jyotiprasad Medhi, New Age International
(P) Limited, Wiley.

aorwd

~No

Practical: Linear Algebra and Statistical methods Lab.
Credits - 01, Contact hours - 30.

1. Implementing machine learning algorithms, understanding their underlying mechanisms by using
linear algebra concepts like vectors, matrices, eigenvalues, and eigenvectors

2. Solving systems of linear equations: Gaussian elimination, Gauss-Jordan elimination, and LU
decomposition

3. Statistical methods like analysing datasets by utilizing descriptive statistics by mean, median,
standard deviation

4. Data visualization techniques (histograms, boxplots) to analyse and interpret datasets containing
information like heights and weights of individuals, identify outliers, and assess normality

5. Designing experiments and analysing results by applying principles of experimental design, like one-
way and two-way ANOVA and for tasks such as testing the efficacy of different pain management
methods

6. Predicting trends and classifying data by building regression models to predict outcomes based on
given data and employing classification techniques to categorize data into different classes

7. Understanding and evaluating machine learning algorithms like hypothesis testing and confidence
intervals which are vital in evaluating the performance and reliability of machine learning models

(These are suggestive applications of the theory portion. The software mentioned above can be used in
the applications).

Tools/Simulator/Programming Language — Python Programming language with libraries like
NumPy, Sage Math, or Scilab.

Minor Papers for Computer Science

(4-Year Honours & Honours with Research Courses of Studies)

Semester

Computer Science as Minor (M1)

study/discipline

Computer Science as Minor (M2)

study/discipline

Theory Paper

Practical paper

Theory Paper

Practical paper

Credits - 03 Credits - 01 Credits — 03 Credits - 01
(75 marks) (25-marks) (75 marks) (25 marks)

| Computer Digital Logic Not Applicable Not Applicable
fundamentals & Digital | Circuit Lab

Logic.

Problem Solving Using
C

Problem Solving
using C Lab

Not Applicable

Not Applicable

Not Applicable

Not Applicable

Computer
fundamentals & Digital
Logic.

Digital Logic
Circuit Lab

v Not Applicable Not Applicable Problem Solving Using | Problem Solving
C using C Lab
Data Structures Data Structures Data Structures Data Structures
Vv using C using C
Operating System Shell Programming | Operating System Shell Programming
For candidates who elect to pursue M1 or M2 in Computer Science during Semester-VI
Data Structures Data Structures Data Structures Data Structures
Vi using C using C

Operating System

Shell Programming

Operating System

Shell Programming

	CSR-67-2025
	1. Computer Science Sem 5 and 6 for CU final syllabus (CCF)
	2. Minor-Honours

